The Persistent Close Air Support (PCAS) program aims to improve air-to-ground fire coordination, but could revolutionise military tech development and deployment as well.
Air-ground fire coordination – also known as Close Air Support or CAS – is a dangerous and difficult business. Pilots and dismounted ground agents must ensure they hit only the intended target using just voice directions and, if they’re lucky, a common paper map. It can often take up to an hour to confer, get in position and strike – time in which targets can attack first or move out of reach. To help address these challenges, DARPA recently awarded a contract for Phase II of its Persistent Close Air Support (PCAS) program to the Raytheon Company of Waltham, Mass. PCAS aims to enable ground forces and combat aircrews to jointly select and employ precision-guided weapons from a diverse set of airborne platforms. The program seeks to leverage advances in computing and communications technologies to fundamentally increase CAS effectiveness, as well as improve the speed and survivability of ground forces engaged with enemy forces. “Our goal is to make Close Air Support more precise, prompt and easy to coordinate under stressful operational conditions,” said Dan Patt, DARPA program manager. “We could use smaller munitions to hit smaller or moving targets, minimising the risk of friendly fire or collateral damage.” While its tools have become more sophisticated, CAS has not fundamentally changed since World War I. To accelerate CAS capabilities well beyond the current technological state of the art, PCAS envisions an all-digital system that incorporates commercial IT products and models such as open interfaces, element modularity and mobile software applications. PCAS designs currently include two main components, PCAS-Air and PCAS-Ground. PCAS-Air would consist of an internal guidance system, weapons and engagement management systems, and high-speed data transfer via Ethernet, existing aircraft wiring or wireless networks. Based on tactical information, PCAS-Air’s automated algorithms would recommend optimal travel routes to the target, which weapon to use on arrival and how best to deploy it. Aircrews could receive information either through hardwired interfaces or wirelessly via tablet computers. PCAS-Air would inform ground forces through PCAS-Ground, a suite of technologies enabling improved mobility, situational awareness and communications for fire coordination. A HUD eyepiece wired to a tablet computer like that used in PCAS-Air
|